Improving RBF Networks Classification Performance by using K-Harmonic Means
نویسندگان
چکیده
In this paper, a clustering algorithm named KHarmonic means (KHM) was employed in the training of Radial Basis Function Networks (RBFNs). KHM organized the data in clusters and determined the centres of the basis function. The popular clustering algorithms, namely K-means (KM) and Fuzzy c-means (FCM), are highly dependent on the initial identification of elements that represent the cluster well. In KHM, the problem can be avoided. This leads to improvement in the classification performance when compared to other clustering algorithms. A comparison of the classification accuracy was performed between KM, FCM and KHM. The classification performance is based on the benchmark data sets: Iris Plant, Diabetes and Breast Cancer. RBFN training with the KHM algorithm shows better accuracy in classification problem. Keywords—Neural networks, Radial basis functions, Clustering method, K-harmonic means.
منابع مشابه
Improving the Performance of K-means Clustering Algorithm
This paper proposed two updating methods to improve the clustering performance of adaptive k-means clustering. The proposed updating methods are suitable for off-line and on-line clustering. The capability of the updating methods are then compared to the existing updating methods using simulated and real data sets. Simulation results showed that the proposed updating methods have significantly ...
متن کاملBack to the Future: Radial Basis Function Networks Revisited
Radial Basis Function (RBF) networks are a classical family of algorithms for supervised learning. The most popular approach for training RBF networks has relied on kernel methods using regularization based on a norm in a Reproducing Kernel Hilbert Space (RKHS), which is a principled and empirically successful framework. In this paper we aim to revisit some of the older approaches to training t...
متن کاملGenetic evolution of radial basis function coverage using orthogonal niches
A well-performing set of radial basis functions (RBFs) can emerge from genetic competition among individual RBFs. Genetic selection of the individual RBFs is based on credit sharing which localizes competition within orthogonal niches. These orthogonal niches are derived using singular value decomposition and are used to apportion credit for the overall performance of the RBF network among indi...
متن کاملImproving the Classification Accuracy of RBF and MLP Neural Networks Trained with Imbalanced Samples
In practice, numerous applications exist where the data are imbalanced. It supposes a damage in the performance of the classifier. In this paper, an appropriate metric for imbalanced data is applied as a filtering technique in the context of Nearest Neighbor rule, to improve the classification accuracy in RBF and MLP neural networks. We diminish atypical or noisy patterns of the majority-class ...
متن کاملMaximum Likelihood Estimation of Elliptical Basis Function Parameters with Application to Speaker Verification
The use of the K-means algorithm and the K-nearest neighbor heuristic in estimating the radial basis function (RBF) parameters may produce sub-optimal performance when the input vectors contain correlated components. This paper proposes to overcome this problem by incorporating full covariance matrices into the RBF structure and to use the expectation-maximi-zation (EM) algorithm to estimate th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010